4.5 Article

A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models

期刊

NUMERISCHE MATHEMATIK
卷 111, 期 2, 页码 169-205

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00211-008-0188-0

关键词

-

资金

  1. NSF [DMS0410023, DMS- 0310585, DMS- 0610430]

向作者/读者索取更多资源

The paper is concerned with development of a new finite-volume method for a class of chemotaxis models and for a closely related haptotaxis model. In its simplest form, the chemotaxis model is described by a system of nonlinear PDEs: a convection-diffusion equation for the cell density coupled with a reaction-diffusion equation for the chemoattractant concentration. The first step in the derivation of the new method is made by adding an equation for the chemoattractant concentration gradient to the original system. We then show that the convective part of the resulting system is typically of a mixed hyperbolic-elliptic type and therefore straightforward numerical methods for the studied system may be unstable. The proposed method is based on the application of the second-order central-upwind scheme, originally developed for hyperbolic systems of conservation laws in Kurganov et al. (SIAM J Sci Comput 21:707-740, 2001), to the extended system of PDEs. We show that the proposed second-order scheme is positivity preserving, which is a very important stability property of the method. The scheme is applied to a number of two-dimensional problems including the most commonly used Keller-Segel chemotaxis model and its modern extensions as well as to a haptotaxis system modeling tumor invasion into surrounding healthy tissue. Our numerical results demonstrate high accuracy, stability, and robustness of the proposed scheme.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据