4.4 Article

Fluid-Structure Interactions in a Tissue during Hyperthermia

期刊

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10407782.2013.869080

关键词

-

资金

  1. United Arab Emirates National Research Foundation [EFRMA 2012-21889]

向作者/读者索取更多资源

A numerical investigation based on fluid-structure interaction analysis was conducted to determine the influence of pulsatile turbulent flow and heating protocol on temperature distribution and heat flux variation in blood vessel and tumor tissues receiving hyperthermia treatment. The arterial wall was modeled using the volume-averaged porous media equations. In addition, a physiological waveform was employed for the inlet velocity and exit pressure. Furthermore, the present numerical model was validated by comparing it with previously published results in the literature. Moreover, discretization of the transport equations was achieved using a finite element scheme based on the Galerkin method of weighted residuals. The results were presented for both flexible and rigid wall models and three different heating schemes were considered in this investigation; constant temperature, constant wall flux and a step-wise heat flux. The first two heating schemes were found to exhibit large temperature variation along the top and bottom surfaces of the tumor, which could influence the surrounding healthy tissues. The results of this investigation illustrate that the local heat flux variation along the bottom surface of the tumor is greater at the beginning of the cycle, where the velocity magnitude is low as compared to the peak flow condition for different heating schemes. The results of this work may enhance the current understanding of the factors that determine the effect of hyperthermia treatment on tumor tissues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据