4.4 Article

EFFECTS OF THERMAL BOUNDARY CONDITIONS ON ENTROPY GENERATION DURING NATURAL CONVECTION

期刊

NUMERICAL HEAT TRANSFER PART A-APPLICATIONS
卷 59, 期 5, 页码 372-402

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10407782.2011.549075

关键词

-

向作者/读者索取更多资源

A comprehensive numerical study on entropy generation during natural convection is studied in a square cavity subjected to a wide variety of thermal boundary conditions. Entropy generation terms involving thermal and velocity gradients are evaluated accurately based on the elemental basis set via the Galerkin finite element method. The thermal and fluid irreversibilities during the conduction and convection dominant regimes are analyzed in detail for various fluids (Pr = 0.026,988.24) within Ra = 10(3)-10(5). Further, the effect of Ra on the total entropy generation and average Bejan number is discussed. It is observed that thermal boundary conditions significantly affect the thermal mixing, temperature uniformity, and the entropy generation in the cavity. A case where the bottom wall is hot isothermal with linearly cooled side walls and adiabatic top wall is found to result in high thermal mixing and a higher degree of temperature uniformity with minimum total entropy generation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据