4.8 Article

Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system

期刊

NUCLEIC ACIDS RESEARCH
卷 42, 期 12, 页码 7884-7893

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gku510

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [PU 435/1-1]
  2. Strategischer Forschungsfonds at the Heinrich Heine University

向作者/读者索取更多资源

The adaptation against foreign nucleic acids by the CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins) depends on the insertion of foreign nucleic acid-derived sequences into the CRISPR array as novel spacers by still unknown mechanism. We identified and characterized in Escherichia coli intermediate states of spacer integration and mapped the integration site at the chromosomal CRISPR array in vivo. The results show that the insertion of new spacers occurs by site-specific nicking at both strands of the leader proximal repeat in a staggered way and is accompanied by joining of the resulting 5 '-ends of the repeat strands with the 3 '-ends of the incoming spacer. This concerted cleavage-ligation reaction depends on the metal-binding center of Cas1 protein and requires the presence of Cas2. By acquisition assays using plasmid-located CRISPR array with mutated repeat sequences, we demonstrate that the primary sequence of the first repeat is crucial for cleavage of the CRISPR array and the ligation of new spacer DNA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据