4.8 Article

The activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1

期刊

NUCLEIC ACIDS RESEARCH
卷 42, 期 8, 页码 5217-5233

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gku129

关键词

-

资金

  1. The Max Planck Society
  2. Deutsche Forschungsgemeinschaft [DFG] [FOR855]
  3. European Union [275343]

向作者/读者索取更多资源

The removal of the 5'-cap structure by the decapping enzyme DCP2 and its coactivator DCP1 shuts down translation and exposes the mRNA to 5'-to-3' exonucleolytic degradation by XRN1. Although yeast DCP1 and DCP2 directly interact, an additional factor, EDC4, promotes DCP1-DCP2 association in metazoan. Here, we elucidate how the human proteins interact to assemble an active decapping complex and how decapped mRNAs are handed over to XRN1. We show that EDC4 serves as a scaffold for complex assembly, providing binding sites for DCP1, DCP2 and XRN1. DCP2 and XRN1 bind simultaneously to the EDC4 C-terminal domain through short linear motifs (SLiMs). Additionally, DCP1 and DCP2 form direct but weak interactions that are facilitated by EDC4. Mutational and functional studies indicate that the docking of DCP1 and DCP2 on the EDC4 scaffold is a critical step for mRNA decapping in vivo. They also revealed a crucial role for a conserved asparagine-arginine containing loop (the NR-loop) in the DCP1 EVH1 domain in DCP2 activation. Our data indicate that DCP2 activation by DCP1 occurs preferentially on the EDC4 scaffold, which may serve to couple DCP2 activation by DCP1 with 5'-to-3' mRNA degradation by XRN1 in human cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据