4.8 Article

Comprehensive mutational scanning of a kinase in vivo reveals substrate-dependent fitness landscapes

期刊

NUCLEIC ACIDS RESEARCH
卷 42, 期 14, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gku511

关键词

-

资金

  1. Broad Institute

向作者/读者索取更多资源

Deep mutational scanning has emerged as a promising tool for mapping sequence-activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid. In this approach, diverse variants of a sequence of interest are first ranked according to their activities in a relevant assay, and this ranking is then used to infer the shape of the fitness landscape around the wild-type sequence. Little is currently known, however, about the degree to which such fitness landscapes are dependent on the specific assay conditions from which they are inferred. To explore this issue, we performed comprehensive single-substitution mutational scanning of APH(3')II, a Tn5 transposon-derived kinase that confers resistance to aminoglycoside antibiotics, in Escherichia coli under selection with each of six structurally diverse antibiotics at a range of inhibitory concentrations. We found that the resulting local fitness landscapes showed significant dependence on both antibiotic structure and concentration, and that this dependence can be exploited to guide protein engineering. Specifically, we found that differential analysis of fitness landscapes allowed us to generate synthetic APH(3')II variants with orthogonal substrate specificities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据