4.8 Article

Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation

期刊

NUCLEIC ACIDS RESEARCH
卷 42, 期 11, 页码 7226-7235

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gku389

关键词

-

资金

  1. National Natural Science Foundation of China [31271334, 31330001]

向作者/读者索取更多资源

The prokaryotic immune system CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated genes) adapts to foreign invaders by acquiring their short deoxyribonucleic acid (DNA) fragments as spacers, which guide subsequent interference to foreign nucleic acids based on sequence matching. The adaptation mechanism avoiding acquiring 'self' DNA fragments is poorly understood. In Haloarcula hispanica, we previously showed that CRISPR adaptation requires being primed by a pre-existing spacer partially matching the invader DNA. Here, we further demonstrate that flanking a fully-matched target sequence, a functional PAM (protospacer adjacent motif) is still required to prime adaptation. Interestingly, interference utilizes only four PAM sequences, whereas adaptation-priming tolerates as many as 23 PAM sequences. This relaxed PAM selectivity explains how adaptation-priming maximizes its tolerance of PAM mutations (that escape interference) while avoiding mis-targeting the spacer DNA within CRISPR locus. We propose that the primed adaptation, which hitches and cooperates with the interference pathway, distinguishes target from non-target by CRISPR ribonucleic acid guidance and PAM recognition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据