4.8 Article

hnRNPL and nucleolin bind LINE-1 RNA and function as host factors to modulate retrotransposition

期刊

NUCLEIC ACIDS RESEARCH
卷 41, 期 1, 页码 575-585

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gks1075

关键词

-

资金

  1. National Institutes of Health (NIH) [R01 GM40367, P30 CA046934]
  2. NATIONAL CANCER INSTITUTE [P30CA046934] Funding Source: NIH RePORTER
  3. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM040367] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Long INterspersed Element one (LINE-1, or L1), is a widely distributed, autonomous retrotransposon in mammalian genomes. During retrotransposition, L1 RNA functions first as a dicistronic mRNA and then as a template for cDNA synthesis. Previously, we defined internal ribosome entry sequences (IRESs) upstream of both ORFs (ORF1 and ORF2) in the dicistronic mRNA encoded by mouse L1. Here, RNA affinity chromatography was used to isolate cellular proteins that bind these regions of L1 RNA. Four proteins, the heterogeneous nuclear ribonucleoproteins (hnRNPs) R, Q and L, and nucleolin (NCL), appeared to interact specifically with the ORF2 IRES. These were depleted from HeLa cells to examine their effects on L1 IRES-mediated translation and L1 retrotransposition. NCL knockdown specifically reduced the ORF2 IRES activity, L1 and L1-assisted Alu retrotransposition without altering L1 RNA or protein abundance. These findings are consistent with NCL acting as an IRES trans-acting factor (ITAF) for ORF2 translation and hence a positive host factor for L1 retrotransposition. In contrast, hnRNPL knockdown dramatically increased L1 retrotransposition as well as L1 RNA and ORF1 protein, indicating that this cellular protein normally interferes with retrotransposition. Thus, hnRNPL joins a small, but growing list of cellular proteins that are potent negative regulators of L1 retrotransposition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据