4.8 Article

Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G

期刊

NUCLEIC ACIDS RESEARCH
卷 40, 期 18, 页码 9206-9217

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gks685

关键词

-

资金

  1. National Institutes of Health (NIH) [GM 57200, CA 153936]

向作者/读者索取更多资源

The AID/APOBEC family of enzymes in higher vertebrates converts cytosines in DNA or RNA to uracil. They play a role in antibody maturation and innate immunity against viruses, and have also been implicated in the demethylation of DNA during early embryogenesis. This is based in part on reported ability of activation-induced deaminase (AID) to deaminate 5-methylcytosines (5mC) to thymine. We have reexamined this possibility for AID and two members of human APOBEC3 family using a novel genetic system in Escherichia coli. Our results show that while all three genes show strong ability to convert C to U, only APOBEC3A is an efficient deaminator of 5mC. To confirm this, APOBEC3A was purified partially and used in an in vitro deamination assay. We found that APOBEC3A can deaminate 5mC efficiently and this activity is comparable to its C to U deamination activity. When the DNA-binding segment of AID was replaced with the corresponding segment from APOBEC3A, the resulting hybrid had much higher ability to convert 5mC to T in the genetic assay. These and other results suggest that the human AID deaminates 5mC's only weakly because the 5-methyl group fits poorly in its DNA-binding pocket.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据