4.8 Article

PCNA directs type 2 RNase H activity on DNA replication and repair substrates

期刊

NUCLEIC ACIDS RESEARCH
卷 39, 期 9, 页码 3652-3666

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkq980

关键词

-

资金

  1. Medical Research Council
  2. Lister Institute of Preventative Medicine
  3. Cancer Research UK
  4. Wellcome Trust [075491/Z04]
  5. European Molecular Biology Organization (EMBO)
  6. Cancer Research Institute (CRI)
  7. St John's College (SJC)
  8. MRC Human Genetics Unit
  9. MRC [MC_EX_G0601852, G0900084] Funding Source: UKRI
  10. Medical Research Council [G0900084, MC_EX_G0601852] Funding Source: researchfish

向作者/读者索取更多资源

Ribonuclease H2 is the major nuclear enzyme degrading cellular RNA/DNA hybrids in eukaryotes and the sole nuclease known to be able to hydrolyze ribonucleotides misincorporated during genomic replication. Mutation in RNASEH2 causes Aicardi-Goutieres syndrome, an auto-inflammatory disorder that may arise from nucleic acid byproducts generated during DNA replication. Here, we report the crystal structures of Archaeoglobus fulgidus RNase HII in complex with PCNA, and human PCNA bound to a C-terminal peptide of RNASEH2B. In the archaeal structure, three binding modes are observed as the enzyme rotates about a flexible hinge while anchored to PCNA by its PIP-box motif. PCNA binding promotes RNase HII activity in a hinge-dependent manner. It enhances both cleavage of ribonucleotides misincorporated in DNA duplexes, and the comprehensive hydrolysis of RNA primers formed during Okazaki fragment maturation. In addition, PCNA imposes strand specificity on enzyme function, and by localizing RNase H2 and not RNase H1 to nuclear replication foci in vivo it ensures that RNase H2 is the dominant RNase H activity during nuclear replication. Our findings provide insights into how type 2 RNase H activity is directed during genome replication and repair, and suggest a mechanism by which RNase H2 may suppress generation of immunostimulatory nucleic acids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据