4.8 Article

Binding of aminoglycoside antibiotics to helix 69 of 23S rRNA

期刊

NUCLEIC ACIDS RESEARCH
卷 38, 期 9, 页码 3094-3105

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkp1253

关键词

-

资金

  1. National Institutes of Health [GM23037]
  2. National Science Foundation [MCB0548602]

向作者/读者索取更多资源

Aminoglycosides antibiotics negate dissociation and recycling of the bacterial ribosome's subunits by binding to Helix 69 (H69) of 23S rRNA. The differential binding of various aminoglycosides to the chemically synthesized terminal domains of the Escherichia coli and human H69 has been characterized using spectroscopy, calorimetry and NMR. The unmodified E. coli H69 hairpin exhibited a significantly higher affinity for neomycin B and tobramycin than for paromomycin (K(d)s = 0.3 +/- 0.1, 0.2 +/- 0.2 and 5.4 +/- 1.1 mu M, respectively). The binding of streptomycin was too weak to assess. In contrast to the E. coli H69, the human 28S rRNA H69 had a considerable decrease in affinity for the antibiotics, an important validation of the bacterial target. The three conserved pseudouridine modifications (Psi 1911, Psi 1915, Psi 1917) occurring in the loop of the E. coli H69 affected the dissociation constant, but not the stoichiometry for the binding of paromomycin (K(d) = 2.6 +/- 0.1 mu M). G1906 and G1921, observed by NMR spectrometry, figured predominantly in the aminoglycoside binding to H69. The higher affinity of the E. coli H69 for neomycin B and tobramycin, as compared to paromomycin and streptomycin, indicates differences in the efficacy of the aminoglycosides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据