4.8 Article

Identification of soluble protein fragments by gene fragmentation and genetic selection

期刊

NUCLEIC ACIDS RESEARCH
卷 36, 期 9, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkn151

关键词

-

资金

  1. Wellcome Trust Funding Source: Medline

向作者/读者索取更多资源

We describe a new method, which identifies protein fragments for soluble expression in Escherichia coli from a randomly fragmented gene library. Inhibition of E. coli dihydrofolate reductase (DHFR) by trimethoprim (TMP) prevents growth, but this can be relieved by murine DHFR (mDHFR). Bacterial strains expressing mDHFR fusions with the soluble proteins green fluroscent protein (GFP) or EphB2 (SAM domain) displayed markedly increased growth rates with TMP compared to strains expressing insoluble EphB2 (TK domain) or ketosteroid isomerase (KSI). Therefore, mDHFR is affected by the solubility of fusion partners and can act as a reporter of soluble protein expression. Random fragment libraries of the transcription factor Fli1 were generated by deoxyuridine incorporation and endonuclease V cleavage. The fragments were cloned upstream of mDHFR and TMP resistant clones expressing soluble protein were identified. These were found to cluster around the DNA binding ETS domain. A selected Fli1 fragment was expressed independently of mDHFR and was judged to be correctly folded by various biophysical methods including NMR. Soluble fragments of the cell-surface receptor Pecam1 were also identified. This genetic selection method was shown to generate expression clones useful for both structural studies and antibody generation and does not require a priori knowledge of domain architecture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据