4.2 Article

Long-range rapidity correlations in heavy-light ion collisions

期刊

NUCLEAR PHYSICS A
卷 906, 期 -, 页码 50-83

出版社

ELSEVIER
DOI: 10.1016/j.nuclphysa.2013.03.006

关键词

Heavy ion collisions; Parton saturation; Correlations

资金

  1. US Department of Energy [DE-SC0004286]

向作者/读者索取更多资源

We study two-particle long-range rapidity correlations arising in the early stages of heavy ion collisions in the saturation/Color Glass Condensate framework, assuming for simplicity that one colliding nucleus is much larger than the other. We calculate the two-gluon production cross section while including all-order saturation effects in the heavy nucleus with the lowest-order rescattering in the lighter nucleus. We find four types of correlations in the two-gluon production cross section: (i) geometric correlations, (ii) HBT correlations accompanied by a back-to-back maximum, (iii) away-side correlations, and (iv) near-side azimuthal correlations which are long-range in rapidity. The geometric correlations (i) are due to the fact that nucleons are correlated by simply being confined within the same nucleus and may lead to long-range rapidity correlations for the produced particles without strong azimuthal angle dependence. Somewhat surprisingly, long-range rapidity correlations (iii) and (iv) have exactly the same amplitudes along with azimuthal and rapidity shapes: one centered around Delta phi = pi with the other one centered around Delta phi = 0 (here Delta phi is the azimuthal angle between the two produced gluons). We thus observe that the early-time CGC dynamics in nucleus nucleus collisions generates azimuthal non-flow correlations which are qualitatively different from jet correlations by being long-range in rapidity. If strong enough, they have the potential of mimicking the elliptic (and higher-order even-harmonic) flow in the di-hadron correlators: one may need to take them into account in the experimental determination of the flow observables. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据