4.3 Article

Direct detection and quantification of abasic sites for in vivo studies of DNA damage and repair

期刊

NUCLEAR MEDICINE AND BIOLOGY
卷 36, 期 8, 页码 975-983

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.nucmedbio.2009.07.007

关键词

Abasic sites; Apurinic/apyrimidinic sites; TMZ; DNA; Tumor; PET imaging

资金

  1. National Cancer Institute [CA86357, CA82292, CA43703]
  2. CRCD-imaging Pilot
  3. Case Comprehensive Cancer Center

向作者/读者索取更多资源

Use of chemotherapeutic agents to induce cytotoxic DNA damage and programmed cell death is a key strategy in cancer treatments. However, the efficacy of DNA-targeted agents such as temozolomide is often compromised by intrinsic cellular responses such as DNA base excision repair (BER). Previous studies have shown that BER pathway resulted in formation of abasic or apurinic/apyrimidinic (AP) sites, and blockage of AP sites led to a significant enhancement of drug sensitivity due to reduction of DNA base excision repair. Since a number of chemotherapeutic agents also induce formation of AP sites, monitoring of these sites as a clinical correlate of drug effect will provide a useful tool in the development of DNA-targeted chemotherapies aimed at blocking abasic sites from repair. Here we report an imaging technique based on positron emission tomography (PET) that allows for direct quantification of AP sites in vivo. For this purpose, positron-emitting carbon-11 has been incorporated into methoxyamine ([(11)C]MX) that binds covalently to AP sites with high specificity. The binding specificity of [(11)C]MX for AP sites was demonstrated by in vivo blocking experiments. Using [(11)C]MX as a radiotracer, animal PET studies have been conducted in melanoma and glioma xenografts for quantification of AP sites. Following induction of AP sites by temozolomide, both tumor models showed significant increase of [(11)C]MX uptake in tumor regions in terms of radioactivity concentration as a function of time, which correlates well with conventional aldehyde reactive probe (ARP)-based bioassays for AP sites. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据