4.3 Article

Incorporation of gadolinium and boron into Zirconium alloy: Surface alloying of immiscible materials using an intense pulsed ion beam

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nimb.2010.05.101

关键词

Intense ion beam; Surface alloying; Surface modification; Metastable phase; Integral fuel burnable absorbers

资金

  1. Department of Energy Nuclear Energy Research Initiatives (NERI) [DE-FG07-02SF22617]

向作者/读者索取更多资源

We investigate the potential for incorporation by surface alloying of two elements, gadolinium (Gd) and boron (B), into Zr-alloy substrates, by the application of an intense ion beam pulse to a conventionally pre-applied Gd or B thin film coating to the substrate. The beam is produced by the Repetitive High Energy Pulsed Power-1 (RHEPP-1) ion beam facility at Sandia National Laboratories Surface alloying is desirable in this case for two reasons (1) conventional alloying is not possible because both Gd and B have negligible solubility in Zr at room temperature, and (2) a conventionally applied coating without surface alloying may be expected to delaminate in the harsh end-environment where the elements are used (e g fission reactors). While surface alloying has been a topic of investigation both by the present and prior researchers, the goal of the present work is the detailed study incorporating heat flow simulations and a full complement of materials analysis tools to characterize surface alloying of Zr-alloy substrates with Gd and B. Use of code simulations is essential for predicting appropriate film thickness and ion beam treatment fluences, which are specific to a given film-substrate system. Characterization after ion beam surface treatments confirmed successful alloying of both Gd and B by significant extension of their solid solubility in Zr-alloy substrates. While Gd surface alloying of Zr-alloys resulted in unacceptable oxidation in thermal and environmental conditions mimicking a nuclear reactor environment, B surface alloying resulted in acceptable corrosion resistance comparable to the as-received Zr-alloys. (C) 2010 Elsevier By. All rights reserved

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据