4.4 Article

Simulation of recoil trajectories in gas-filled magnetic separators

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nima.2013.01.020

关键词

Gas-filled separator; Trajectory simulation; Heavy ions

资金

  1. Office of High Energy and Nuclear Physics, Nuclear Physics Division, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

A computer code has been developed to simulate the production of heavy element compound nucleus recoils and their trajectories through gas-filled magnetic separators. The simulation is carried out in three steps: positions and trajectories of heavy element recoils in the target layer, propagation through remaining target material, and trajectories through the gas-filled separator. Separators with quite different magnetic configurations are modeled: the Berkeley gas-filled separator (BGS) and two magnetic configurations for the TransActinide separator and chemistry apparatus (TASCA). While computing trajectories through the gas-filled separator, special attention is paid to the charge exchange/equilibration and scattering in the gas. New features of these simulations include mixed He/H-2/N-2 gas operation and a gas density (pressure) effect. Numerical procedures used in the simulations are explained in detail. Results of the simulations are presented, showing the gas mixtures/pressures that result in the highest efficiency for collecting compound nucleus recoils at the focal plane of the gas-filled separator. Comparison between simulation and experimental results are presented for average recoil ion charge in various gases, focal plane image size, and magnetic rigidity dispersion. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据