4.4 Article

High resolution synchrotron-based radiography and tomography using hard X-rays at the BAMline (BESSY II)

出版社

ELSEVIER
DOI: 10.1016/j.nima.2007.11.020

关键词

microtomography; non-destructive evaluation; synchrotron instrumentation; coherent imaging; X-ray refraction; phase contrast; holotomography; synchrotron-CT; scintillator; Bragg magnification

向作者/读者索取更多资源

The use of high brilliance and partial coherent synchrotron light for radiography and computed tomography (CT) allows to image micro-structured, multi-component specimens with different contrast modes and resolutions up to submicrometer range. This is of high interest for materials research, life science and non-destructive evaluation applications. An imaging setup for microtomography and radiography installed at BESSY II (a third generation synchrotron light source located in Berlin, Germany) as part of its first hard X-ray beamline (BAMline) can now be used for absorption, refraction as well as phase contrast - dedicated to inhouse research and applications by external users. Monochromatic synchrotron light between 6 keV and 80 keV is attained via a fully automated double multilayer monochromator. For imaging applications the synchrotron beam transmitted by the sample is converted with a scintillator into visible light. By use of microscope optics this luminescence image is then projected onto, e.g., a CCD chip. Several scintillating materials are used in order to optimise the performance of the detector system. Different optical systems are available for imaging ranging from a larger field of view and moderate resolutions (macroscope - up to 14 mm x 14 mm field of view) to high resolution (microscope - down to 0.35 mu m pixel size), offering magnifications from 1.8x to 40x. Additionally asymmetric cut Bragg crystals in front of the scintillator can be used for a further magnification in one dimension by a factor of about 20. Slow and fast cameras are available, with up to 16 bit dynamic range. We show the suitability of the setup for numerous applications from materials research and life science. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据