4.5 Article

CFD study and PCHE design for secondary heat exchangers with FLiNaK-Helium for SmAHTR

期刊

NUCLEAR ENGINEERING AND DESIGN
卷 270, 期 -, 页码 325-333

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.nucengdes.2014.02.003

关键词

-

资金

  1. U.S. Department of Energy (DOE) Nuclear Energy University Programs (NEUP)
  2. Ohio Super-computer Center (OSC)

向作者/读者索取更多资源

Printed Circuit Heat Exchangers (PCHEs) were selected from a variety of heat exchanger candidates as a starting point for a Secondary Heat Exchanger (SHX) design with FLiNaK-Helium working fluids in Advanced High Temperature Reactors (AHTRs). Since experimental data are not currently available for the PCHEs with FLiNaK-Helium, a numerical study using a Computational Fluid Dynamics (CFD) code was performed to investigate thermal-hydraulic performance on the PCHE under the expected SHX condition. A local pitch-averaged method was used to develop local dimensionless parameters from CFD results. The Fanning factor and Nusselt number provided from the current CFD study were compared to the correlations that were previously developed for several different working fluids. A large discrepancy and unusual behavior were observed for the Fanning factor multiplied by Reynolds number on the FLiNaK side. Based on our suggested design procedure, a cost analysis was performed to combine pros and cons of the heat exchanger size and the associated pressure drop. Finally, an appropriate Reynolds number operating range where the PCHE is to meet the design requirements was suggested for the SHXs with different banking configurations. Furthermore, considering the heat exchanger size, pressure drop, and cost comprehensively, we proposed a reasonable SHX design for the 125-MWth SmAHTR. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据