4.5 Article

A momentum source model for wire-wrapped rod bundles-Concept, validation, and application

期刊

NUCLEAR ENGINEERING AND DESIGN
卷 262, 期 -, 页码 371-389

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.nucengdes.2013.04.026

关键词

-

资金

  1. U.S. Department of Energy Office of Nuclear Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program
  2. U.S. Department of Energy [DE-AC02-06CH11357]

向作者/读者索取更多资源

Large uncertainties still exist in the treatment of wire-spacers and drag models for momentum transfer in current lumped parameter models. To improve the hydraulic modeling of wire-wrap spacers in a rod bundle, a three-dimensional momentum source model (MSM) has been developed to model the anisotropic flow without the need to resolve the geometric details of the wire-wraps. The MSM is examined for 7-pin and 37-pin bundles steady-state simulations using the commercial CFD code STAR-CCM+. The calculated steady-state inter-subchannel cross flow velocities match very well in comparisons between bare bundles with the MSM applied and the wire-wrapped bundles with explicit geometry. The validity of the model is further verified by mesh and parameter sensitivity studies. Furthermore, the MSM is applied to a 61-pin EBR-II experimental subassembly for both steady state and PLOF transient simulations. Reasonably accurate predictions of temperature, pressure, and fluid flow velocities have been achieved using the MSM for both steady-state and transient conditions. Significant computing resources are saved with the MSM since it can be used on a much coarser computational mesh. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据