4.4 Article

Quantum confinement and quasiparticle corrections in α-HgS from first principles

期刊

SURFACE SCIENCE
卷 636, 期 -, 页码 54-58

出版社

ELSEVIER
DOI: 10.1016/j.susc.2015.01.020

关键词

Density functional theory; Nanowires; Electronic structure; GW approximation; Quantum confinement

资金

  1. Army Research Lab Multiscale Multidisciplinary Modeling of Electronic Materials (MSME) Collaborative Research Alliance (CRA)
  2. INDO-US Forum

向作者/读者索取更多资源

Using a combination of density functional theory and many-body GW corrections, we calculate the quasipartide band gap of bulk alpha-HgS and investigate the effect of quantum confinement on the geometric, electronic and optical structures. The basic structural unit of alpha-HgS is a one-dimensional helical chain consisting of covalently bound Hg and S atoms. When isolated to just a single helix or to a few-helix configuration, we find that alpha-HgS becomes a wide-gap semiconductor with a quasiparticle band gap as large as 7.0 eV, in contrast to the bulk structure with a direct quasiparticle band gap of 2.8 eV and an indirect gap of 2.14 eV. This dramatic increase in the band gap is attributed to quantum confinement effects on the geometry and intra-helix bonding. Shifts in the band gaps are also reflected as shifts in the low-energy optical absorption spectra calculated via density functional theory. As more helical chains are added, the band gap decreases sharply while the geometry becomes more bulk-like. This work illustrates the strong effects of quantum confinement in low-dimensional a-HgS nanostructures. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据