4.5 Article

Pattern solutions of the Klausmeier Model for banded vegetation in semi-arid environments I

期刊

NONLINEARITY
卷 23, 期 10, 页码 2657-2675

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0951-7715/23/10/016

关键词

-

资金

  1. Leverhulme Trust

向作者/读者索取更多资源

In many semi-arid environments, vegetation cover is sparse, and is self-organized into large-scale spatial patterns. In particular, banded vegetation is typical on hillsides. Mathematical modelling is widely used to study these banded patterns, and many models are effectively extensions of a coupled reaction-diffusion-advection system proposed by Klausmeier (1999 Science 284 1826-8). However, there is currently very little mathematical theory on pattern solutions of these equations. This paper is the first in a series whose aim is a comprehensive understanding of these solutions, which can act as a springboard both for future simulation-based studies of the Klausmeier model, and for analysis of model extensions. The author focusses on a particular part of parameter space, and derives expressions for the boundaries of the parameter region in which patterns occur. The calculations are valid to leading order at large values of the 'slope parameter', which reflects a comparison of the rate of water flow downhill with the rate of vegetation dispersal. The form of the corresponding patterns is also studied, and the author shows that the leading order equations change close to one boundary of the parameter region in which there are patterns, leading to a homoclinic solution. Conclusions are drawn on the way in which changes in mean annual rainfall affect pattern properties, including overall biomass productivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据