4.7 Article

A novel terminal sliding mode controller for a class of non-autonomous fractional-order systems

期刊

NONLINEAR DYNAMICS
卷 73, 期 1-2, 页码 679-688

出版社

SPRINGER
DOI: 10.1007/s11071-013-0822-y

关键词

Nonsingular terminal sliding mode; Finite-time control; Lyapunov theorem; Fractional calculus

向作者/读者索取更多资源

This paper introduces a finite-time control technique for control of a class of non-autonomous fractional-order nonlinear systems in the presence of system uncertainties and external noises. It is known that finite-time control methods demonstrate better robustness and disturbance rejection properties. Moreover, finite time control methods have optimal settling time. In order to design a robust finite-time controller, a new nonsingular terminal sliding manifold is proposed. The proposed sliding mode dynamics has the property of fast convergence to zero. Afterwards, a novel fractional sliding mode control law is introduced to guarantee the occurrence of the sliding motion in finite time. The convergence times of both reaching and sliding phases are estimated. The main characteristics of the proposed fractional sliding mode technique are (1) finite-time convergence to the origin; (2) the use of only one control input; (3) robustness against system uncertainties and external noises; and (4) the ability of control of non-autonomous fractional-order systems. At the end of this paper, some computer simulations are included to highlight the applicability and efficacy of the proposed fractional control method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据