4.4 Article

The application of magnetic resonance fingerprinting to single voxel proton spectroscopy

期刊

NMR IN BIOMEDICINE
卷 31, 期 11, 页码 -

出版社

WILEY
DOI: 10.1002/nbm.4001

关键词

magnetic resonance fingerprinting; magnetic resonance spectroscopic fingerprinting; MRF; MRS; multiparametric MRS; T-1 relaxation; T-2 relaxation

向作者/读者索取更多资源

Magnetic resonance fingerprinting has been proposed as a method for undersampling k-space while simultaneously yielding multiparametric tissue maps. In the context of single voxel spectroscopy, fingerprinting can provide a unified framework for parameter estimation. We demonstrate the utility of such a magnetic resonance spectroscopic fingerprinting (MRSF) framework for simultaneously quantifying metabolite concentrations, T-1 and T-2 relaxation times and transmit inhomogeneity for major singlets of N-acetylaspartate, creatine and choline. This is achieved by varying T-R, T-E and the flip angle of the first pulse in a PRESS sequence between successive excitations (i.e. successive T-R values). The need for multiparametric schemes such as MRSF for accurate medical diagnostics is demonstrated with the aid of realistic in vivo simulations; these show that certain schemes lead to substantial increases to the area under receiver operating characteristics of metabolite concentrations, when viewed as classifiers of pathologies. Numerical simulations and phantom and in vivo experiments using several different schedules of variable length demonstrate superior precision and accuracy for metabolite concentrations and longitudinal relaxation, and similar performance for the quantification of transverse relaxation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据