4.4 Article

Improvements in high-field localized MRS of the medial temporal lobe in humans using new deformable high-dielectric materials

期刊

NMR IN BIOMEDICINE
卷 24, 期 7, 页码 873-879

出版社

WILEY
DOI: 10.1002/nbm.1638

关键词

dielectrics; localized spectroscopy; RF transmit field

资金

  1. project LeARN [02N-101]
  2. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)

向作者/读者索取更多资源

The intrinsic nonuniformities in the transmit radiofrequency field from standard quadrature volume resonators at high field are particularly problematic for localized MRS in areas such as the temporal lobe, where a low signal-to-noise ratio and poor metabolite quantification result from destructive B-1(+) field interference, in addition to line broadening and signal loss from strong susceptibility gradients. MRS of the temporal lobe has been performed in a number of neurodegenerative diseases at clinical fields, but a relatively low signal-to-noise ratio has prevented the reliable quantification of, for example, glutamate and glutamine, which are thought to play a key role in disease progression. Using a recently developed high-dielectric-constant material placed around the head, localized MRS of the medial temporal lobe using the stimulated echo acquisition mode sequence was acquired at 7 T. The presence of the material increased the signal-to-noise ratio of MRS by a factor of two without significantly reducing the sensitivity in other areas of the brain, as shown by the measured B-1(+) maps. An increase in the receive sensitivity B-1(-) was also measured close to the pads. The spectral linewidth of the unsuppressed water peak within the voxel of interest was reduced slightly by the introduction of the dielectric pads (although not to a statistically significant degree), a result confirmed by using a pad composed of lipid. Using LCmodel for quantitative analysis of metabolite concentrations, the increase in signal-to-noise ratio and the slight decrease in spectral linewidth contributed to statistically significant reductions in the Cramer-Rao lower bounds (CRLBs), also allowing the levels of glutamate and glutamine to be quantified with CRLBs below 20%. Copyright (C) 2010 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据