4.7 Article

Detection and quantification of diameter reduction due to corrosion in reinforcing steel bars

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1475921715578315

关键词

Guided wave; dispersion curves; time-of-flight; corrosion; steel bars; short-time Fourier transform; wavelet transform; S-transform

资金

  1. AFOSR [FA9550-08-1-0318]

向作者/读者索取更多资源

Guided wave-based techniques are becoming popular for damage detection in pipes, rods, and plates. For monitoring reinforced concrete beams, the longitudinal guided wave is excited and recorded after its transmission through the reinforcing steel bar for estimating its corrosion level. Recorded signal amplitude is affected by the corrosion level. Thus, the corrosion level is estimated from the transmitted wave amplitude. Instead of investigating the amplitude of the transmitted guided waves, the differential time-of-flight of the propagating wave modes is recorded in this article. The differential time-of-flight is obtained from the time-frequency representations of the recorded transient signals and from the high temporal resolution using the cross-correlation technique. It is observed that the corrosion level can be quantified from the change in time-of-flight of the L(0,1) mode. The guided wave modes are experimentally generated, recorded, and compared with the theoretical dispersion curves to identify different modes and select the most efficient mode for quantifying the corrosion level. Unlike the recorded signal strength, the time-of-flight is not influenced by the bonding condition between the sensors and the specimen; therefore, the time-of-flight-based corrosion-monitoring technique is less influenced by the sensor bonding condition. This investigation is necessary because most investigators have studied the effect of corrosion on the recorded signal strength instead of its time-of-flight.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据