4.6 Article

S-acylation anchors remorin proteins to the plasma membrane but does not primarily determine their localization in membrane microdomains

期刊

NEW PHYTOLOGIST
卷 203, 期 3, 页码 758-769

出版社

WILEY
DOI: 10.1111/nph.12867

关键词

membrane domain; palmitoylation; protein-protein interaction; remorin; S-acylation

资金

  1. German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) [OT 423/2-1]
  2. Universitat Bayern e.V.

向作者/读者索取更多资源

Remorins are well-established marker proteins for plasma membrane microdomains. They specifically localize to the inner membrane leaflet despite an overall hydrophilic amino acid composition. Here, we determined amino acids and post-translational lipidations that are required for membrane association of remorin proteins. We used a combination of cell biological and biochemical approaches to localize remorin proteins and truncated variants of those in living cells and determined S-acylation on defined residues in these proteins. S-acylation of cysteine residues in a C-terminal hydrophobic core contributes to membrane association of most remorin proteins. While S-acylation patterns differ between members of this multi-gene family, initial membrane association is mediated by protein-protein or protein-lipid interactions. However, S-acylation is not a key determinant for the localization of remorins in membrane microdomains. Although remorins bind via a conserved mechanism to the plasma membrane, other membrane-resident proteins may be involved in the recruitment of remorins into membrane domains. S-acylation probably occurs after an initial targeting of the proteins to the plasma membrane and locks remorins in this compartment. As S-acylation is a reversible post-translational modification, stimulus-dependent intracellular trafficking of these proteins can be envisioned.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据