4.6 Article

Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis

期刊

NEW PHYTOLOGIST
卷 203, 期 3, 页码 842-850

出版社

WILEY
DOI: 10.1111/nph.12850

关键词

chaparral; hydraulic conductance; hydraulic safety margin; leaf mass per area; Mediterranean-type ecosystem; water potentials; wood density

资金

  1. National Science Foundation (NSF) [DGE-1326120, 08-17212]

向作者/读者索取更多资源

Coordination of water movement among plant organs is important for understanding plant water use strategies. The hydraulic segmentation hypothesis (HSH) proposes that hydraulic conductance in shorter lived, 'expendable' organs such as leaves and longer lived, more 'expensive' organs such as stems may be decoupled, with resistance in leaves acting as a bottleneck or 'safety valve'. We tested the HSH in woody species from a Mediterranean-type ecosystem by measuring leaf hydraulic conductance (K-leaf) and stem hydraulic conductivity (K-S). We also investigated whether leaves function as safety valves by relating Kleaf and the hydraulic safety margin (stem water potential minus the water potential at which 50% of conductivity is lost (Psi(stem) - Psi(50))). We also examined related plant traits including the operating range of water potentials, wood density, leaf mass per area, and leaf area to sapwood area ratio to provide insight into whole-plant water use strategies. For hydrated shoots, Kleaf was negatively correlated with KS, supporting the HSH. Additionally, Kleaf was positively correlated with the hydraulic safety margin and negatively correlated with the leaf area to sapwood area ratio. Consistent with the HSH, our data indicate that leaves may act as control valves for species with high KS, or a low safety margin. This critical role of leaves appears to contribute importantly to plant ecological specialization in a drought-prone environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据