4.6 Article

Rhizosphere stoichiometry: are C : N : P ratios of plants, soils, and enzymes conserved at the plant species-level?

期刊

NEW PHYTOLOGIST
卷 201, 期 2, 页码 505-517

出版社

WILEY
DOI: 10.1111/nph.12531

关键词

ecological stoichiometry; extracellular enzymes; microbial biomass; plant species; rhizosphere; semiarid grassland; soil nutrients

资金

  1. US National Science Foundation (DEB) [1021559]
  2. US Department of Energy's Office of Science (Biological and Environmental Research)
  3. Division Of Environmental Biology
  4. Direct For Biological Sciences [1020540] Funding Source: National Science Foundation

向作者/读者索取更多资源

As a consequence of the tight linkages among soils, plants and microbes inhabiting the rhizosphere, we hypothesized that soil nutrient and microbial stoichiometry would differ among plant species and be correlated within plant rhizospheres. We assessed plant tissue carbon (C):nitrogen (N):phosphorus (P) ratios for eight species representing four different plant functional groups in a semiarid grassland during near-peak biomass. Using intact plant species-specific rhizospheres, we examined soil C:N:P, microbial biomass C:N, and soil enzyme C:N:P nutrient acquisition activities. We found that few of the plant species' rhizospheres demonstrated distinct stoichiometric properties from other plant species and unvegetated soil. Plant tissue nutrient ratios and components of below-ground rhizosphere stoichiometry predominantly differed between the C-4 plant species Buchloe dactyloides and the legume Astragalus laxmannii. The rhizospheres under the C-4 grass B.dactyloides exhibited relatively higher microbial C and lower soil N, indicative of distinct soil organic matter (SOM) decomposition and nutrient mineralization activities. Assessing the ecological stoichiometry among plant species' rhizospheres is a high-resolution tool useful for linking plant community composition to below-ground soil microbial and nutrient characteristics. By identifying how rhizospheres differ among plant species, we can better assess how plant-microbial interactions associated with ecosystem-level processes may be influenced by plant community shifts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据