4.6 Article

New insights into carbon allocation by trees from the hypothesis that annual wood production is maximized

期刊

NEW PHYTOLOGIST
卷 199, 期 4, 页码 981-990

出版社

WILEY-BLACKWELL
DOI: 10.1111/nph.12344

关键词

canopy photosynthesis; gross primary production; leaf area index; maximum wood production; optimization model; root nitrogen uptake; rooting depth; tree carbon allocation

向作者/读者索取更多资源

Allocation of carbon (C) between tree components (leaves, fine roots and woody structures) is an important determinant of terrestrial C sequestration. Yet, because the mechanisms underlying C allocation are poorly understood, it is a weak link in current earth-system models. We obtain new theoretical insights into C allocation from the hypothesis (MaxW) that annual wood production is maximized. MaxW is implemented using a model of tree C and nitrogen (N) balance with a vertically resolved canopy and root system for stands of Norway spruce (Picea abies). MaxW predicts optimal vertical profiles of leaf N and root biomass, optimal canopy leaf area index and rooting depth, and the associated optimal pattern of C allocation. Key insights include a predicted optimal C-N functional balance between leaves at the base of the canopy and the deepest roots, according to which the net C export from basal leaves is just sufficient to grow the basal roots required to meet their N requirement. MaxW links the traits of basal leaves and roots to whole-tree C and N uptake, and unifies two previous optimization hypotheses (maximum gross primary production, maximum N uptake) that have been applied independently to canopies and root systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据