4.6 Article

Superior aluminium (Al) tolerance of Stylosanthes is achieved mainly by malate synthesis through an Al-enhanced malic enzyme, SgME1

期刊

NEW PHYTOLOGIST
卷 202, 期 1, 页码 209-219

出版社

WILEY
DOI: 10.1111/nph.12629

关键词

aluminium (Al) tolerance; malate exudation; malate synthesis; malic enzyme; Stylosanthes

资金

  1. National Key Basic Research Special Funds of China [2011CB100301]
  2. National Natural Science Foundation of China [31025022]
  3. Earmarked Fund for China Agriculture Research System [CARS-35]

向作者/读者索取更多资源

Stylosanthes (stylo) is a dominant leguminous forage in the tropics. Previous studies suggest that stylo has great potential for aluminium (Al) tolerance, but little is known about the underlying mechanism. A novel malic enzyme, SgME1, was identified from the Al-tolerant genotype TPRC2001-1 after 72 h Al exposure by two-dimensional electrophoresis, and the encoding gene was cloned and characterized via heterologous expression in yeast, Arabidopsis thaliana and bean (Phaseolus vulgaris) hairy roots. Internal Al detoxification might be mainly responsible for the 72 h Al tolerance of TPRC2001-1, as indicated by 5.8-fold higher root malate concentrations and approximately two-fold higher Al concentrations in roots and root symplasts of TPRC2001-1 than those of the Al-sensitive genotype Fine-stem. An accompanying increase in malate secretion might also reduce a fraction of Al uptake in TPRC2001-1. Gene and protein expression of SgME1 was only enhanced in TPRC2001-1 after 72 h Al exposure. Overexpressing SgME1 enhanced malate synthesis and rescued yeast, A. thaliana and bean hairy roots from Al toxicity via increasing intracellular malate concentrations and/or accompanied malate exudation. These results provide strong evidence that superior Al tolerance of stylo is mainly conferred by Al-enhanced malate synthesis, functionally controlled by SgME1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据