4.6 Article

SUB1A-mediated submergence tolerance response in rice involves differential regulation of the brassinosteroid pathway

期刊

NEW PHYTOLOGIST
卷 198, 期 4, 页码 1060-1070

出版社

WILEY
DOI: 10.1111/nph.12202

关键词

brassinosteroids; gibberellic acid (GA); hormone homeostasis; rice (Oryza sativa); SUB1A; submergence tolerance

资金

  1. Life Sciences Competition grant from University of Nebraska, Lincoln, USA

向作者/读者索取更多资源

Submergence 1A (SUB1A), is an ethylene response factor (ERF) that confers submergence tolerance in rice (Oryza sativa) via limiting shoot elongation during the inundation period. SUB1A has been proposed to restrict shoot growth by modulating gibberellic acid (GA) signaling. Our transcriptome analysis indicated that SUB1A differentially regulates genes associated with brassinosteroid (BR) synthesis during submergence. Consistent with the gene expression data, the SUB1A genotype had higher brassinosteroid levels after submergence compared to the intolerant genotype. Tolerance to submergence can be activated in the intolerant genotype by pretreatment with exogenous brassinolide, which results in restricted shoot elongation during submergence. BR induced a GA catabolic gene, resulting in lower GA levels in SUB1A plants. BR treatment also induced the DELLA protein SLR1, a known repressor of GA responses such as shoot elongation. We propose that BR limits GA levels during submergence in the SUB1A rice through a GA catabolic enzyme as part of an early response and may repress GA responses by inducing SLR1 after several days of submergence. Our results suggest that BR biosynthesis is regulated in a SUB1A-dependent manner during submergence and is involved in modulating the GA signaling and homeostasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据