4.6 Article

Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease

期刊

NEW PHYTOLOGIST
卷 199, 期 3, 页码 773-786

出版社

WILEY-BLACKWELL
DOI: 10.1111/nph.12324

关键词

AvrBs3 (avirulence protein triggering Bs3 resistance); Brg11(hrpB-regulated 11); designer transcription activator-like effector (TALE); GMI1000; Ralstonia solanacearum; Ralstonia transcription activator-like effector (TALE)-like (RTL); repeat variable diresidue (RVD); transcription activator-like (TAL) effectors

资金

  1. Deutsche Forschungsgemeinschaft [SFB924]
  2. Two Blades Foundation
  3. Exzellenznetzwerk Biowissenschaften (Ministry of Culture of Saxonia-Anhalt)

向作者/读者索取更多资源

Ralstonia solanacearum is a devastating bacterial phytopathogen with a broad host range. Ralstonia solanacearum injected effector proteins (Rips) are key to the successful invasion of host plants. We have characterized Brg11(hrpB-regulated 11), the first identified member of a class of Rips with high sequence similarity to the transcription activator-like (TAL) effectors of Xanthomonas spp., collectively termed RipTALs. Fluorescence microscopy of in planta expressed RipTALs showed nuclear localization. Domain swaps between Brg11 and Xanthomonas TAL effector (TALE) AvrBs3 (avirulence protein triggering Bs3 resistance) showed the functional interchangeability of DNA-binding and transcriptional activation domains. PCR was used to determine the sequence of brg11 homologs from strains infecting phylogenetically diverse host plants. Brg11 localizes to the nucleus and activates promoters containing a matching effector-binding element (EBE). Brg11 and homologs preferentially activate promoters containing EBEs with a 5' terminal guanine, contrasting with the TALE preference for a 5' thymine. Brg11 and other RipTALs probably promote disease through the transcriptional activation of host genes. Brg11 and the majority of homologs identified in this study were shown to activate similar or identical target sequences, in contrast to TALEs, which generally show highly diverse target preferences. This information provides new options for the engineering of plants resistant to R. solanacearum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据