4.6 Article

Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis

期刊

NEW PHYTOLOGIST
卷 198, 期 3, 页码 836-852

出版社

WILEY
DOI: 10.1111/nph.12188

关键词

arbuscular mycorrhizas; AsPT1; AsPT4; Astragalus sinicus; overexpression; Pht1 family; RNA interference

资金

  1. National Natural Science Foundation of China [30870082, 30800001]

向作者/读者索取更多资源

Arbuscular mycorrhizas contribute significantly to inorganic phosphate (Pi) uptake in plants. Gene networks involved in the regulation and function of the Pht1 family transporters in legume species during AM symbiosis are not fully understood. In order to characterize the six distinct members of Pht1 transporters in mycorrhizal Astragalus sinicus, we combined cellular localization, heterologous functional expression in yeast with expression/subcellular localization studies and reverse genetics approaches in planta. Pht1;1 and Pht1;4 silenced lines were generated to uncover the role of the newly discovered dependence of the AM symbiosis on another phosphate transporter AsPT1 besides AsPT4. These Pht1 transporters are triggered in Pi-starved mycorrhizal roots. AsPT1 and AsPT4 were localized in arbuscule-containing cells of the cortex. The analysis of promoter sequences revealed conserved motifs in both AsPT1 and AsPT4. AsPT1 overexpression showed higher mycorrhization levels than controls for parameters analysed, including abundance of arbuscules. By contrast, knockdown of AsPT1 by RNA interference led to degenerating or dead arbuscule phenotypes identical to that of AsPT4 silencing lines. AsPT4 but not AsPT1 is required for symbiotic Pi uptake. These results suggest that both, AsPT1 and AsPT4, are required for the AM symbiosis, most importantly, AsPT1 may serve as a novel symbiotic transporter for AM development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据