4.6 Article

The physiological importance of developmental mechanisms that enforce proper stomatal spacing in Arabidopsis thaliana

期刊

NEW PHYTOLOGIST
卷 201, 期 4, 页码 1205-1217

出版社

WILEY
DOI: 10.1111/nph.12586

关键词

Arabidopsis thaliana; clustering; epidermal patterning; g(smax); one-cell spacing; stomatal conductance; stomatal development

资金

  1. Stanford University Bio-X Interdisciplinary Fellowship
  2. Carnegie Institution for Science
  3. Gordon and Betty Moore Foundation
  4. Div Of Biological Infrastructure
  5. Direct For Biological Sciences [1040106] Funding Source: National Science Foundation

向作者/读者索取更多资源

Genetic and cell biological mechanisms that regulate stomatal development are necessary to generate an appropriate number of stomata and enforce a minimum spacing of one epidermal cell between stomata. The ability to manipulate these processes in a model plant system allows us to investigate the physiological importance of stomatal patterning and changes in density, therein testing underlying theories about stomatal biology. Twelve Arabidopsis thaliana genotypes that have varied stomatal characteristics as a result of mutations or transgenes were analyzed in this study. Stomatal traits were used to categorize the genotypes and predict maximum stomatal conductance to water vapor (Anatomical g(smax)) for individuals. Leaf-level gas-exchange measurements determined Diffusive g(smax), net carbon assimilation (A), water-use efficiency (WUE), and stomatal responses to increasing CO2 concentration. Genotypes with proper spacing (< 5% of stomata in clusters) achieved Diffusive g(smax) values comparable to Anatomical g(smax) across a 10-fold increase in stomatal density, while lines with patterning defects (> 19% clustering) did not. Genotypes with clustering also had reduced A and impaired stomatal responses, while WUE was generally unaffected by patterning. Consequently, optimal function per stoma was dependent on maintaining one epidermal cell spacing and the physiological parameters controlled by stomata were strongly correlated with Anatomical g(smax).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据