4.6 Article

Banksia born to burn

期刊

NEW PHYTOLOGIST
卷 191, 期 1, 页码 184-196

出版社

WILEY
DOI: 10.1111/j.1469-8137.2011.03663.x

关键词

Banksia; clonality; fire; flammability; resprouter; serotiny; trait evolution

资金

  1. Office of Research and Development, Curtin University
  2. ARC [LP100100620]

向作者/读者索取更多资源

Historical evidence of recurrent fire in many of the world's biomes suggests that fire may have had profound evolutionary influences on their extant floras. However, the role of fire as a selective force in the origin and evolution of plant traits remains controversial. Using Bayesian Monte-Carlo-Markov-Chain procedures and calibration points from the fossil record, we generated a dated phylogeny for the iconic Australian genus Banksia, and reconstructed the evolutionary/chronological position of five putatively fire-related traits. The fire-dependent trait, on-plant seed storage (serotiny), and associated fire-enhancing trait, dead floret retention, co-originated with the first appearance of Banksia 60.8 million yr ago (Palaeocene). Whether nonsprouting or resprouting is ancestral was indeterminable, but the first banksias were nonclonal. Derived traits, such as dead leaf retention (fire-enhancing) and clonality (underground budbanks; fire-avoiding), first appeared 26-16 million yr ago (Miocene) with the onset of seasonal drought and thus more frequent fire, and culminated in dead florets/bracts completely covering the persistent fruits in some species. Thus, fire may have been a selective force in the very origin of Banksia 40 million yr before the onset of climate seasonality in the Miocene, and continued to have an impact on the direction of evolution, favouring traits consistent with adaptation to an increasingly (sometimes less) fire-prone environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据