4.6 Article

Endogenous sink-source interactions and soil nitrogen regulate leaf life-span in an evergreen shrub

期刊

NEW PHYTOLOGIST
卷 183, 期 4, 页码 1114-1123

出版社

WILEY
DOI: 10.1111/j.1469-8137.2009.02893.x

关键词

leaf life-span; nitrogen resorption; nitrogen resorption efficiency; N-15 labelling; soil nitrogen availability; sink-source interactions

向作者/读者索取更多资源

How the balance between exogenous and endogenous nitrogen for shoot growth varies with soil nitrogen availability, and its consequences on leaf life-span, have rarely been studied within a single species in the field. In this study, we investigated two Rhododendron ferrugineum populations with contrasting leaf life-span. Soil nitrogen availability and nitrogen resorption of different leaf age classes were assessed, as were the interactions between plant compartments, using N-15 labelling and sink organ suppression. The population growing on poorer soil had a shorter leaf life-span (17.9 vs 21.5 months) and a higher net contribution of leaf reserves to shoot growth (32% vs 15%), achieved by faster nitrogen resorption and greater shedding of young nitrogen-rich leaves. For both populations, wood contributed to over 40% of shoot nitrogen demand. Both the negative relationship between current-year shoot mass and the percentage of 1-yr-old attached leaves and the delay of leaf shedding after bud removal suggest that shoot development has a strong effect on leaf life-span. Our results suggest that, contrary to the evolutionary response, plastic response to low soil nitrogen could reduce leaf life-span in evergreen plants. In addition, leaf life-span seems to be strongly influenced by the discrepancy between shoot nitrogen demand and soil nitrogen uptake rather than nitrogen demand alone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据