4.6 Article

Quasinormal mode approach to modelling light-emission and propagation in nanoplasmonics

期刊

NEW JOURNAL OF PHYSICS
卷 16, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/16/11/113048

关键词

nanoplasmonics; quasinormal modes; effective mode volume; Purcell factors; quantum dots; light-matter interactions; Green functions

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Canadian Institute for Advanced Research, Queen's University
  3. Danish Council for Independent Research [FTP 10-093651]

向作者/读者索取更多资源

We describe a powerful and intuitive theoretical technique for modeling light-matter interactions in classical and quantum nanoplasmonics. Our approach uses a quasinormal mode (QNM) expansion of the photon Green function within a metal nanoresonator of arbitrary shape, together with a Dyson equation, to derive an expression for the spontaneous decay rate and far field propagator from dipole oscillators outside resonators. For a single QNM, at field positions outside the quasi-static coupling regime, we give a closed form solution for the Purcell factor and generalized effective mode volume. We augment this with an analytic expression for the divergent local density of optical states very near the metal surface, which allows us to derive a simple and highly accurate expression for the electric field outside the metal resonator at distances from a few nanometers to infinity. This intuitive formalism provides an enormous simplification over full numerical calculations and fixes several pending problems in QNM theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据