4.6 Article

Precise evaluation of thermal response functions by optimized density matrix renormalization group schemes

期刊

NEW JOURNAL OF PHYSICS
卷 15, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/15/7/073010

关键词

-

资金

  1. DFG [FOR 801]

向作者/读者索取更多资源

This paper provides a study and discussion of earlier as well as novel more efficient schemes for the precise evaluation of finite-temperature response functions of strongly correlated quantum systems in the framework of the time-dependent density matrix renormalization group (tDMRG). The computational costs and bond dimensions as functions of time and temperature are examined for the example of the spin-1/2 XXZ Heisenberg chain in the critical XY phase and the gapped Neel phase. The matrix product state purifications occurring in the algorithms are in a one-to-one relation with the corresponding matrix product operators. This notational simplification elucidates implications of quasi-locality on the computational costs. Based on the observation that there is considerable freedom in designing efficient tDMRG schemes for the calculation of dynamical correlators at finite temperatures, a new class of optimizable schemes, as recently suggested in Barthel, Schollwock and Sachdev (2012 arXiv:1212.3570), is explained and analyzed numerically. A specific novel near-optimal scheme that requires no additional optimization reaches maximum times that are typically increased by a factor of 2, when compared against earlier approaches. These increased reachable times make many more physical applications accessible. For each of the described tDMRG schemes, one can devise a corresponding transfer matrix renormalization group variant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据