4.6 Article

Mesoscopic theory for fluctuating active nematics

期刊

NEW JOURNAL OF PHYSICS
卷 15, 期 -, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1367-2630/15/8/085032

关键词

-

资金

  1. EPSRC [EP/K018450/1]
  2. EPSRC [EP/K018450/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/K018450/1] Funding Source: researchfish

向作者/读者索取更多资源

The term active nematics designates systems in which apolar elongated particles spend energy to move randomly along their axis and interact by inelastic collisions in the presence of noise. Starting from a simple Vicsek-style model for active nematics, we derive a mesoscopic theory, complete with effective multiplicative noise terms, using a combination of kinetic theory and Ito calculus approaches. The stochastic partial differential equations thus obtained are shown to recover the key terms argued in Ramaswamy et al (2003 Europhys. Lett. 62 196) to be at the origin of anomalous number fluctuations and long-range correlations. Their deterministic part is studied analytically, and is shown to give rise to the long-wavelength instability at onset of nematic order (see Shi X and Ma Y 2010 arXiv:1011.5408). The corresponding nonlinear density-segregated band solution is given in a closed form.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据