4.6 Article

Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics

期刊

NEW JOURNAL OF PHYSICS
卷 14, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/14/9/095014

关键词

-

资金

  1. Defense Advanced Research Projects Agency (DARPA) ORCHID program through the Air Force Office of Scientific Research [C11L10831]
  2. Packard Foundation
  3. NSF [MRSEC DMR 1119826]
  4. NSF CAREER award
  5. DFG [PE 1832/1-1]

向作者/读者索取更多资源

Silicon photonics has offered a versatile platform for the recent development of integrated optomechanical circuits. However, silicon is limited to wavelengths above 1.1 mu m and does not allow device operation in the visible spectrum range where low-noise lasers are conveniently available. The narrow bandgap of silicon also makes silicon optomechanical devices susceptible to strong two-photon absorption and free carrier absorption, which often introduce strong thermal effects that limit the devices' stability and cooling performance. Further, silicon also does not provide the desired lowest order optical nonlinearity for interfacing with other active electrical components on a chip. On the other hand, aluminum nitride (AlN) is a wide-band semiconductor widely used in micromechanical resonators due to its low mechanical loss and high electromechanical coupling strength. In this paper, we report the development of AlN-on-silicon platform for low loss, wide-band optical guiding, as well as its use for achieving simultaneously high-optical-quality-factor and high-mechanical-quality-factor optomechanical devices. Exploiting AlN's inherent second-order nonlinearity we further demonstrate electro-optic modulation and efficient second harmonic generation in AlN photonic circuits. Our results suggest that low-cost AlN-on-silicon photonic circuits are excellent substitutes for complementary metal-oxide-semiconductor-compatible photonic circuits for building new functional optomechanical devices that are free from carrier effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据