4.6 Article

Non-thermal fixed points and solitons in a one-dimensional Bose gas

期刊

NEW JOURNAL OF PHYSICS
卷 14, 期 -, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1367-2630/14/7/075005

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [GA 677/7,8]
  2. University of Heidelberg (FRONTIER, Excellence Initiative, Center for Quantum Dynamics)
  3. Helmholtz Association [HA216/EMMI]

向作者/读者索取更多资源

Single-particle momentum spectra for a dynamically evolving one-dimensional Bose gas are analysed in the semi-classical wave limit. Representing one of the simplest correlation functions, these provide information on a possible universal scaling behaviour. Motivated by the previously discovered connection between (quasi-) topological field configurations, strong wave turbulence and non-thermal fixed points of quantum field dynamics, soliton formation is studied with respect to the appearance of transient power-law spectra. A random-soliton model is developed for describing the spectra analytically, and the analogies and differences between the emerging power laws and those found in a field theory approach to strong wave turbulence are discussed. The results open a new perspective on solitary wave dynamics from the point of view of critical phenomena far from thermal equilibrium and the possibility of studying this dynamics by experiment without the need for detecting solitons in situ.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据