4.6 Article

Thermodynamics of elementary excitations in artificial magnetic square ice

期刊

NEW JOURNAL OF PHYSICS
卷 14, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/14/1/015008

关键词

-

资金

  1. CNPq
  2. FAPEMIG
  3. CAPES
  4. FUNARBE

向作者/读者索取更多资源

We investigate the thermodynamics of artificial square spin ice systems assuming only dipolar interactions among the islands that compose the array. Emphasis is given to the effects of temperature on elementary excitations (magnetic monopoles and their strings). By using Monte Carlo techniques we calculate the specific heat, the density of poles and their average separation as functions of temperature. The specific heat and average separation between monopoles with opposite charges exhibit a sharp peak and a local maximum, respectively, at the same temperature, T-p approximate to 7.2D/k(B) (here, D is the strength of the dipolar interaction and k(B) the Boltzmann constant). When the lattice size is increased, the amplitude of these features also increases but very slowly. Really, the specific heat and the maximum of the average separation dmax between oppositely charged monopoles increase logarithmically with system size, indicating that completely isolated charges could be found only at the thermodynamic limit. In general, the results obtained here suggest that, for temperatures T >= T-p, these systems may exhibit a phase with separated monopoles, although the quantity d(max) should not be larger than a few lattice spacings for viable artificial materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据