4.6 Article

Nonclassical time correlation functions in continuous quantum measurement

期刊

NEW JOURNAL OF PHYSICS
卷 14, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/14/1/013009

关键词

-

资金

  1. European Science Council [FP7/2007-2013, 226628]
  2. Israel-Niedersachsen Research Fund
  3. Israel Science Foundation
  4. Alexander von Humboldt Foundation
  5. SFB 767
  6. DFG
  7. Kurt Lion Foundation

向作者/读者索取更多资源

A continuous projective measurement of a quantum system often leads to a suppression of the dynamics, known as the Zeno effect. Alternatively, generalized nonprojective, so-called 'weak' measurements can be carried out. Such a measurement is parameterized by its strength parameter that can interpolate continuously between the ideal strong measurement with no dynamics-the strict Zeno effect, and a weak measurement characterized by almost free dynamics but blurry observations. Here we analyze the stochastic properties of this uncertainty component in the resulting observation trajectory. The observation uncertainty results from intrinsic quantum uncertainty, the effect of measurement on the system (backaction) and detector noise. It is convenient to separate the latter, system-independent contribution from the system-dependent uncertainty, and this paper shows how to accomplish this separation. The system-dependent uncertainty is found in terms of a quasi-probability, which, despite its weaker properties, is shown to satisfy a weak positivity condition. We discuss the basic properties of this quasi-probability with special emphasis on its time correlation functions as well as their relationship to the full correlation functions along the observation trajectory, and illustrate our general results with simple examples. We demonstrate a violation of classical macrorealism using the fourth-order time correlation functions with respect to the quasi-probability in the two-level system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据