4.6 Article

Diagnosing deconfinement and topological order

期刊

NEW JOURNAL OF PHYSICS
卷 13, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/13/2/025009

关键词

-

资金

  1. NSF [DMR-1006608, PHY05-51164]

向作者/读者索取更多资源

Topological or deconfined phases are characterized by emergent, weakly fluctuating, gauge fields. In condensed matter settings, they inevitably come coupled to excitations that carry the corresponding gauge charges which invalidate the standard diagnostic of deconfinement-the Wilson loop. Inspired by a mapping between symmetric sponges and the deconfined phase of the Z(2) gauge theory, we construct a diagnostic for deconfinement that has the interpretation of a line tension. One operator version of this diagnostic turns out to be the Fredenhagen-Marcu order parameter known to lattice gauge theorists and we show that a different version is best suited to condensed matter systems. We discuss generalizations of the diagnostic, use it to establish the existence of finite temperature topological phases in d >= 3 dimensions and show that multiplets of the diagnostic are useful in settings with multiple phases, such as U(1) gauge theories with charge q matter. (Additionally, we present an exact reduction of the partition function of the toric code in general dimensions to a well-studied problem.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据