4.6 Article

Electron-hole pairs during the adsorption dynamics of O2 on Pd(100): exciting or not?

期刊

NEW JOURNAL OF PHYSICS
卷 13, 期 -, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1367-2630/13/8/085010

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [RE 1509/7-1]

向作者/读者索取更多资源

During the exothermic adsorption of molecules at solid surfaces, dissipation of the released energy occurs via the excitation of electronic and phononic degrees of freedom. For metallic substrates, the role of the non-adiabatic electronic excitation channel has been controversially discussed, as the absence of a band gap could favour an easy coupling to a manifold of electron-hole pairs of arbitrarily low energies. We analyse this situation for the highly exothermic showcase system of molecular oxygen dissociating at Pd(100), using time-dependent perturbation theory applied to first-principles electronic-structure calculations. For a range of different trajectories of impinging O-2 molecules, we compute largely varying electron-hole pair spectra, which underlines the necessity to consider the high-dimensionality of the surface dynamical process when assessing the total energy loss into this dissipation channel. Despite the high Pd density of states at the Fermi level, the concomitant non-adiabatic energy losses nevertheless never exceed about 5% of the available chemisorption energy. While this supports an electronically adiabatic description of the predominant heat dissipation into the phononic system, we critically discuss the non-adiabatic excitations in the context of the O-2 spin transition during the dissociation process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据