4.6 Article

The relevance of electrostatics for scanning-gate microscopy

期刊

NEW JOURNAL OF PHYSICS
卷 13, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/13/5/053013

关键词

-

资金

  1. ETH Zurich
  2. Swiss National Science Foundation

向作者/读者索取更多资源

Scanning-probe techniques have been developed to extract local information from a given physical system. In particular, conductance maps obtained by means of scanning-gate microscopy (SGM), where a conducting tip of an atomic-force microscope is used as a local and movable gate, seem to present an intuitive picture of the underlying physical processes. Here, we argue that the interpretation of such images is complex and not very intuitive under certain circumstances: scanning a graphene quantum dot (QD) in the Coulomb-blockaded regime, we observe an apparent shift of features in scanning-gate images as a function of gate voltages, which cannot be a real shift of the physical system. Furthermore, we demonstrate the appearance of more than one set of Coulomb rings arising from the graphene QD. We attribute these effects to screening between the metallic tip and the gates. Our results are relevant for SGM on any kind of nanostructure, but are of particular importance for nanostructures that are not covered with a dielectric, e.g. graphene or carbon nanotube structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据