4.6 Article

Exploring quantum criticality based on ultracold atoms in optical lattices

期刊

NEW JOURNAL OF PHYSICS
卷 13, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/13/4/045011

关键词

-

资金

  1. NSF [PHY-0747907, NSF-MRSEC DMR-0213745]
  2. Packard foundation
  3. DARPA
  4. Grainger Foundation
  5. Division Of Physics
  6. Direct For Mathematical & Physical Scien [0747907] Funding Source: National Science Foundation

向作者/读者索取更多资源

Critical behavior developed near a quantum phase transition, interesting in its own right, offers exciting opportunities to explore the universality of strongly correlated systems near the ground state. Cold atoms in optical lattices, in particular, represent a paradigmatic system, for which the quantum phase transition between the superfluid and Mott insulator states can be externally induced by tuning the microscopic parameters. In this paper, we describe our approach to study quantum criticality of cesium atoms in a two-dimensional (2D) lattice based on in situ density measurements. Our research agenda involves testing critical scaling of thermodynamic observables and extracting transport properties in the quantum critical regime. We present and discuss experimental progress on both fronts. In particular, the thermodynamic measurement suggests that the equation of state near the critical point follows the predicted scaling law at low temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据