4.6 Article

Coherent imaging of biological samples with femtosecond pulses at the free-electron laser FLASH

期刊

NEW JOURNAL OF PHYSICS
卷 12, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/12/3/035003

关键词

-

资金

  1. BMBF [05KS4VH1, 05KS7VH1]
  2. EU

向作者/读者索取更多资源

Coherent x-ray imaging represents a new window to imaging non-crystalline, biological specimens at unprecedented resolutions. The advent of free-electron lasers (FEL) allows extremely high flux densities to be delivered to a specimen resulting in stronger scattered signal from these samples to be measured. In the best case scenario, the diffraction pattern is measured before the sample is destroyed by these intense pulses, as the processes involved in radiation damage may be substantially slower than the pulse duration. In this case, the scattered signal can be interpreted and reconstructed to yield a faithful image of the sample at a resolution beyond the conventional radiation damage limit. We employ coherent x-ray diffraction imaging (CXDI) using the free-electron LASer in Hamburg (FLASH) in a non-destructive regime to compare images of a biological sample reconstructed using different, single, femtosecond pulses of FEL radiation. Furthermore, for the first time, we demonstrate CXDI, in-line holography and Fourier transform holography (FTH) of the same unicellular marine organism using an FEL and present diffraction data collected using the third harmonic of FLASH, reaching into the water window. We provide quantitative results for the resolution of the CXDI images as a function of pulse intensity, and compare this with the resolutions achieved with in-line holography and FTH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据