4.6 Article

A low-energy electron microscopy and x-ray photo-emission electron microscopy study of Li intercalated into graphene on SiC(0001)

期刊

NEW JOURNAL OF PHYSICS
卷 12, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/12/12/125015

关键词

-

向作者/读者索取更多资源

The effects induced by the deposition of Li on 1 and 0 ML graphene grown on SiC(0001) and after subsequent heating were investigated using low-energy electron microscopy (LEEM) and x-ray photo-emission electron microscopy (XPEEM). For 1 ML samples, the collected photoelectron angular distribution patterns showed the presence of single pi-cones at the six equivalent K-points in the Brillouin zone before Li deposition but the presence of two pi-cones (pi-bands) after Li deposition and after heating to a few hundred degrees C. For 0 ML samples, no pi-band could be detected close to the Fermi level before deposition, but distinct pi-cones at the K-points were clearly resolved after Li deposition and after heating. Thus Li intercalation was revealed in both cases, transforming the carbon buffer layer (0 ML) to graphene. On 1 ML samples, but not on 0 ML, a (root 3 x root 3) R30 degrees diffraction pattern was observed immediately after Li deposition. This pattern vanished upon heating and then wrinkles/cracks appeared on the surface. Intercalation of Li was thus found to deteriorate the quality of the graphene layer, especially for 1 ML samples. These wrinkles/cracks did not disappear even after heating at temperatures >= 500 degrees C, when no Li atoms remained on the substrate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据