4.6 Article

Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities

期刊

NEW JOURNAL OF PHYSICS
卷 12, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/12/5/053005

关键词

-

资金

  1. German Excellence Initiative via the Nanosystems Initiative Munich (NIM)
  2. TUM International Graduate School of Science and Engineering (IGSSE)
  3. TUM Institute for Advanced Study (IAS)

向作者/读者索取更多资源

We present a temperature-dependent photoluminescence study of silicon optical nanocavities formed by introducing point defects into two-dimensional photonic crystals. In addition to the prominent TO-phonon-assisted transition from crystalline silicon at similar to 1.10 eV, we observe a broad defect band luminescence from similar to 1.05 to similar to 1.09 eV. Spatially resolved spectroscopy demonstrates that this defect band is present only in the region where air holes have been etched during the fabrication process. Detectable emission from the cavity mode persists up to room temperature; in strong contrast, the background emission vanishes for T >= 150 K. An Arrhenius-type analysis of the temperature dependence of the luminescence signal recorded either in resonance with the cavity mode or weakly detuned suggests that the higher temperature stability may arise from an enhanced internal quantum efficiency due to the Purcell effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据